모델 예측

CREATE MODEL jnu-team-06.skin_type_metadata.metadata
model_name
OPTIONS(MODEL_TYPE = 'AUTOML_CLASSIFIER',
        BUDGET_HOURS = float64_value,
        OPTIMIZATION_OBJECTIVE = string_value,
        INPUT_LABEL_COLS = string_array,
        DATA_SPLIT_COL = string_value)
[AS query_statement];

CREATE MODEL jnu-team-06.skin_type_metadata.metadata
OPTIONS(MODEL_TYPE='BOOSTED_TREE_CLASSIFIER',
				AUTO_CLASS_WEIGHTS = { FALSE }
        BOOSTER_TYPE = 'GBTREE',
        NUM_PARALLEL_TREE = 1,
        MAX_ITERATIONS = 50,
        TREE_METHOD = 'HIST',
        EARLY_STOP = FALSE,
        SUBSAMPLE = 0.85,
        INPUT_LABEL_COLS = ['dx'])
AS SELECT * FROM jnu-team-06.skin_type_metadata.skin_type_metadata;

<aside> 💡 EDA Create Model Evaluation Tuning Predict

</aside>

Hint

  1. 예측을 위한 유효한 값 선정

버킷 타이즈 기법 - 연령대에 따른 질환 분

{CREATE MODEL |CREATE MODEL IF NOT EXISTS |CREATE OR REPLACE MODEL}
model_name
OPTIONS(MODEL_TYPE = { 'AUTOML_REGRESSOR' | 'AUTOML_CLASSIFIER' },
BUDGET_HOURS =float64_value,
OPTIMIZATION_OBJECTIVE =string_value,
INPUT_LABEL_COLS =string_array,
DATA_SPLIT_COL =string_value)
[ASquery_statement];
  1. 알맞은 모델 고르기

  2. 튜닝

L2 규