모델 예측
CREATE MODEL jnu-team-06.skin_type_metadata.metadata
model_name
OPTIONS(MODEL_TYPE = 'AUTOML_CLASSIFIER',
BUDGET_HOURS = float64_value,
OPTIMIZATION_OBJECTIVE = string_value,
INPUT_LABEL_COLS = string_array,
DATA_SPLIT_COL = string_value)
[AS query_statement];
CREATE MODEL jnu-team-06.skin_type_metadata.metadata
OPTIONS(MODEL_TYPE='BOOSTED_TREE_CLASSIFIER',
AUTO_CLASS_WEIGHTS = { FALSE }
BOOSTER_TYPE = 'GBTREE',
NUM_PARALLEL_TREE = 1,
MAX_ITERATIONS = 50,
TREE_METHOD = 'HIST',
EARLY_STOP = FALSE,
SUBSAMPLE = 0.85,
INPUT_LABEL_COLS = ['dx'])
AS SELECT * FROM jnu-team-06.skin_type_metadata.skin_type_metadata;
<aside> 💡 EDA Create Model Evaluation Tuning Predict
</aside>
Hint
버킷 타이즈 기법 - 연령대에 따른 질환 분
{CREATE MODEL |CREATE MODEL IF NOT EXISTS |CREATE OR REPLACE MODEL}
model_name
OPTIONS(MODEL_TYPE = { 'AUTOML_REGRESSOR' | 'AUTOML_CLASSIFIER' },
BUDGET_HOURS =float64_value,
OPTIMIZATION_OBJECTIVE =string_value,
INPUT_LABEL_COLS =string_array,
DATA_SPLIT_COL =string_value)
[ASquery_statement];
알맞은 모델 고르기
튜닝
L2 규